Initializer Lists
Initializer lists can be used to construct or assign a value
:
value jv = {
{ "name", "John Doe" },
{ "active", true },
{ "associated-accounts", nullptr },
{ "total-balance", 330.00 },
{ "account-balances", { 84, 120, 126 } } };
Simple initializer lists produce an array
:
value jv = { true, 2, "hello", nullptr };
assert( jv.is_array() );
assert( jv.as_array().size() == 4 );
assert( serialize(jv) == R"([true,2,"hello",null])" );
Initializer lists can be nested. Here we construct an array as an element of an array:
value jv = { true, 2, "hello", { "bye", nullptr, false } };
assert( jv.is_array() );
assert( jv.as_array().back().is_array() );
assert( serialize(jv) == R"([true,2,"hello",["bye",null,false]])" );
When a two element initializer list is nested within an enclosing initializer
list, it is unclear whether it represents an array
or an
object
:
// Should this be an array or an object?
value jv = { { "hello", 42 }, { "world", 43 } };
In such cases, if every element consists of a string followed by a single
value, then the enclosing initializer list is interpreted as an object
.
Otherwise, it is interpreted as an array
.
value jv1 = { { "hello", 42 }, { "world", 43 } };
assert( jv1.is_object() );
assert( jv1.as_object().size() == 2 );
assert( serialize(jv1) == R"({"hello":42,"world":43})" );
// All of the following are arrays
value jv2 = { { "make", "Tesla" }, { "model", 3 }, "black" };
value jv3 = { { "library", "JSON" }, { "Boost", "C++", "Fast", "JSON" } };
value jv4 = { { "color", "blue" }, { 1, "red" } };
assert( jv2.is_array() && jv3.is_array() && jv4.is_array() );
To resolve the ambiguity manually, use an explicit constructor:
value jv = { { "hello", 42 }, array{ "world", 43 } };
assert( jv.is_array() );
array& ja = jv.as_array();
assert( ja[0].is_array() && ja[1].is_array());
assert ( serialize(jv) == R"([["hello",42],["world",43]])" );
value jv = { { "mercury", 36 }, { "venus", 67 }, { "earth", 93 } };
assert( jv.is_object() );
assert( serialize(jv) == R"({"mercury":36,"venus":67,"earth":93})" );
array ja = { { "mercury", 36 }, { "venus", 67 }, { "earth", 93 } };
assert( serialize(ja) == R"([["mercury",36],["venus",67],["earth",93]])" );
Similarly, an initializer list for an object
is always interpreted as an
object
. In such cases, the initializer list must be a list of key-value
pairs. For example, the following code will not compile because 1
is not
convertible to a string:
object jo = { { 1, 0.39 }, { "venus", 0.72 }, { "earth", 1 } };
The requirement for an initializer list to be interpreted as an object
or array
when initializing such an entity only applies to the outermost
initializer list; subsequent nested elements will follow the usual ambiguity
resolution rules.
object jo = { { "mercury", { { "distance", 36 } } }, { "venus", { 67, "million miles" } }, { "earth", 93 } };
assert( jo["mercury"].is_object() );
assert( jo["venus"].is_array() );
Elements that are rvalues will be moved upon initialization:
object jo1 = { { "john", 100 }, { "dave", 500 }, { "joe", 300 } };
value jv = { { "clients", std::move(jo1) } };
object& jo2 = jv.as_object()["clients"].as_object();
assert( ! jo2.empty() && jo1.empty() );
assert( serialize(jv) == R"({"clients":{"john":100,"dave":500,"joe":300}})" );
Do not create variables of type |
In all cases, the storage_ptr
owned by an object
,
array
, or value
constructed from an initializer list will be
propagated to each element, recursively.